
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 15: OS III
Co-Instructor: Nikos Triandopoulos

March 18, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Homework 2 is due today

u Project 3 is out and due Thursday, April 3

u Where we are

u Part I: Crypto
u Part II: Web (with demos coming soon)
u Part III: OS
u Part IV: Network
u Part V: Extras

2

Today

u OS security

3

Special Permission Bits

• Three other permission bits exist
– Set-user-ID (“suid” or “setuid”) bit
– Set-group-ID (“sgid” or “setgid”) bit
– Sticky bit

4/7/25 File Permissions4

Set-user-ID

• Set-user-ID (“suid” or “setuid”) bit
–On executable files, causes the program to run as file owner

regardless of who runs it
– Ignored for everything else
– In 10-character display, replaces the 4th character (x or -) with s

(or S if not also executable)
-rwsr-xr-x: setuid, executable by all
-rwxr-xr-x: executable by all, but not setuid
-rwSr--r--: setuid, but not executable - not useful

4/7/25 File Permissions5

Setuid Programs

4/7/25 Operating Systems Security 6

• Unix processes have two user IDs:
– real user ID: user launching the process
– effective user ID: user whose privileges are granted to the process

• An executable file can have the set-user-ID property (setuid)
enabled

• If a user A executes setuid file owned by B, then the
effective user ID of the process is B and not A

Setuid Programs

4/7/25 Operating Systems Security 7

• System call setuid(uid) allows a process to change its
effective user ID to uid

• Some programs that access system resources are owned by
root and have the setuid bit set (setuid programs)
–e.g., passwd and su

• Writing secure setuid programs is tricky because
vulnerabilities may be exploited by malicious user actions

Set-group-ID
• Set-group-ID (“sgid” or “setgid”) bit
– On executable files, causes the program to run with the file’s group, regardless

of whether the user who runs it is in that group
– On directories, causes files created within the directory to have the same group

as the directory, useful for directories shared by multiple users with different
default groups

– Ignored for everything else
– In 10-character display, replaces 7th character (x or -) with s (or S if not also

executable)
-rwxr-sr-x: setgid file, executable by all
drwxrwsr-x: setgid directory; files within will have group of directory
-rw-r-Sr--: setgid file, but not executable - not useful

4/7/25 File Permissions8

Symbolic Link

• In Unix, a symbolic link (aka symlink) is a file that points to
(stores the path of) another file

• A process accessing a symbolic link is transparently redirected
to accessing the destination of the symbolic link

• Symbolic links can be chained, but not to form a cycle

• ln -s really_long_directory/even_longer_file_name myfile

4/7/25 9Operating Systems Security

Gone for Ten Seconds

4/7/25 Operating Systems Security 10

• You leave your desk for 10
seconds without locking your
machine

• The attacker sits at your desk
and types:
% cp /bin/sh /tmp
% chmod 4777 /tmp/sh

• The first command makes a
copy of shell sh

• The second command makes
sh a setuid program

• What happens next?
• The attacker can run the

copy of the shell with your
privileges

• For example:
– Can read your files
– Can change your files

Historical setuid Unix Vulnerabilities: lpr

4/7/25 Operating Systems Security 11

• Command lpr
– running as root setuid
– copied file to print, or symbolic

link to it, to spool file named with
3-digit job number (e.g.,
print954.spool) in /tmp

– Did not check if file already existed
– Random sequence was predictable

and repeated after 1,000 times

• How can we exploit this?

• Attack
– A dangerous combination: setuid,

/tmp, symlinks, …
– Create new password file

newpasswd
– Print a very large file
– lpr –s /etc/passwd
– Print a small file 999 times
– lpr newpasswd
– The password file is overwritten

with newpasswd

Beyond Setuid and Files

4/7/25 Operating Systems Security 12

• Writing setuid programs is tricky
– Easy to inadvertently create

security vulnerabilities
– Unix variants have subtle different

behaviors in setuid-related calls
• Access control to files is tricky
– A user file can be accessed by any

user process
– Shared folders and predictable file

names create security
vulnerabilities

• Consider alternatives
– Manage system resources via

services
– Use databases instead of files

and shared folders
– Use RPCs (including database

queries) to request access to
system resources

setuid/setgid

Special permissions bits:
• setuid (Set User ID): executable runs with privileges of owner,

regardless of who runs it
• setuid (Set Group ID): executable runs with privileges of

group, regardless of who runs it

13

setuid/setgid

Special permissions bits:
• setuid (Set User ID): executable runs with privileges of owner,

regardless of who runs it
• setuid (Set Group ID): executable runs with privileges of

group, regardless of who runs it

14

Unprivileged user can run program with higher privileges!
=> Powerful, but very dangerous

setuid/gid: The effects

15

Disclaimer

setuid/setgid is dangerous. Using it incorrectly can cause serious
problems.

Just as you should never implement your own crypto,
you should not write your own setuid/setgid programs.

You are about to see why.

16

Background: environment variables
System variables that control how processes execute
Set up when a user logs in, as part of shell

17

Get variables
cs1660-user@6010f6e96b02:~$ echo $TERM
xterm
cs1660-user@6010f6e96b02:~$ echo $PWD
/home/cs1660-user

Set a variable
cs1660-user@6010f6e96b02:~$ export SOMETHING=hello
cs1660-user@6010f6e96b02:~$ echo $SOMETHING
Hello

Show the environment
cs1660-user@6010f6e96b02:~$ env
. . .

Background: environment variables
System variables that control how processes execute
Set up when a user logs in, as part of shell

18

Get variables
cs1660-user@6010f6e96b02:~$ echo $TERM
xterm
cs1660-user@6010f6e96b02:~$ echo $PWD
/home/cs1660-user

Set a variable
cs1660-user@6010f6e96b02:~$ export SOMETHING=hello
cs1660-user@6010f6e96b02:~$ echo $SOMETHING
Hello

Show the environment
cs1660-user@6010f6e96b02:~$ env
. . .

Scope is per-shell: log out/open new term => different vars

Background: $PATH
Where the shell looks when you run programs
=> List separated by “:”, traversed in order

19

Get variables
cs1660-user@6010f6e96b02:~$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin

which: $PATH lookup
cs1660-user@6010f6e96b02:~$ which ls
/usr/bin/ls

cs1660-user@6010f6e96b02:~$ which go
/usr/local/go/bin/go

Problems

Input from user pollutes execution environment

=> Another form of code injection!

20

Not every command can be overridden…

21

Background: symbolic links

Indirection in the filesystem: path of one file can point to another

22

Create a symlink
registrar@ceres:~$ ln –sv scripts/reg-v01.sh reg.sh
reg.sh -> scripts/reg-v01.sh

How it looks
registrar@ceres:~$ ls –la reg.sh
lrwxrwxrwx 1 reg reg 9 Mar 12 16:40 reg.sh -> scripts/reg-v01.sh

eg. Use it like a normal file
registrar@ceres:~$./reg.sh

Background: symbolic links

Indirection in the filesystem: path of one file can point to another

23

Create a symlink
registrar@ceres:~$ ln –sv scripts/reg-v01.sh reg.sh
reg.sh -> scripts/reg-v01.sh

How it looks
registrar@ceres:~$ ls –la reg.sh
lrwxrwxrwx 1 reg reg 9 Mar 12 16:40 reg.sh -> scripts/reg-v01.sh

Use it just like a normal file
registrar@ceres:~$./reg.sh

Problem: anyone can create a symlink to anything!
=> Permissions checked on access, not at creation

What can go wrong?

24

TOCTOU: Time of check/time of use

25

Check for access
if ! __effective_user_can_access $code_from_user; then
 echo "You don't have permission to view this file"
 exit 1
fi

Do the access
if cmp --silent $code_expected $code_from_user; then
 echo "Override code approved!"
 add_to_course $course $user
else
 echo "Please use a valid override code"
fi

A race condition!

So why is setuid/gid bad?

26

So why is setuid/gid bad?

Up to the developer to decide what parts of the program can run
with elevated privileges
 => Particularly dangerous for shell scripts

27

So setuid/setgid is dangerous...

28

setuid/setgid is dangerous...

In modern times: only for programs that really need it
• System programs that changing passwords/users, legacy

programs
– Don't do this yourself!

• Very very bad idea for shell scripts

What else can we do?

29

When do we need this?

30

In the shell: su, sudo

• Run as another user (if you have permissions)

• Run commands as root (or another user) based on system
config file (/etc/sudoers)
– Can restrict to specific commands, environment,

31

user@shell:~$ su –c "command" other user

/etc/sudoers:
%wheel ALL=(ALL) NOPASSWD: ALL

. . .

user@shell:~$ sudo whoami
root

From man page on /etc/sudoers: (aka sudoers(5))

32

 ALL CDROM = NOPASSWD: /sbin/umount /CDROM,\
 /sbin/mount -o nosuid\,nodev /dev/cd0a /CDROM

 Any user may mount or unmount a CD-ROM on the machines in the CDROM
 Host_Alias (orion, perseus, hercules) without entering a password.

sudo has a LOT of features, see
man sudoers for details!

Time of Check /Time of Use
(TOCTOU)

eg. Race Condition

33

Race Condition

34

• A race condition occurs when
two threads want to access the
same memory

• Run Thread 1() and Thread 2()
– Outcome is 1 or 2

Global x = 0

Thread 1():
 LOAD x
 ADD 1
 STORE x

Thread 2():
 LOAD x
 ADD 1
 STORE x

Race Condition

35

1. if (!access("/tmp/X", W_OK)) {
/* the real user ID has access right */

2. f = open("/tmp/X", O_WRITE);
3. write_to_file(f);

}
else {

/* the real user ID does not have
access right */

4. fprintf(stderr, "Permission denied\n");
}

• Fragment of setuid program
that writes into file /tmp/X on
behalf of a user who created it

• access verifies permission of
real user ID
– Transparently follows symlinks

• open verifies permission of
effective user ID
– Transparently follows symlinks

• What can go wrong?
Source: Kevin Du, Race Condition Vulnerability, Lecture Notes

http://www.cis.syr.edu/~wedu/Teaching/IntrCompSec/LectureNotes_New/Race_Condition.pdf

TOCTOU Vulnerability

36

• What can go wrong?
– In between (1) and (2), user

could replace /tmp/X with
symlink to /etc/passwd

– Not easy to accomplish
(timing)

• Example of time of check to
time of use (TOCTOU)
vulnerability

1. if (!access("/tmp/X", W_OK)) {
/* the real user ID has access right */

2. f = open("/tmp/X", O_WRITE);
3. write_to_file(f);

}
else {

/* the real user ID does not have
access right */

4. fprintf(stderr, "Permission denied\n");
}

Attempt to Fix the Race Condition

37

1. lstat("/tmp/X", &statBefore);
2. if (!access("/tmp/X", O_RDWR)) {
3. int f = open("/tmp/X", O_RDWR);
4. fstat(f, &statAfter);
5. if (statAfter.st_ino == statBefore.st_ino) {
 /* the I-node is still the same */
6. write_to_file(f);
 }
7. else perror("Race Condition Attacks!");
 }
8. else fprintf(stderr, "Permission denied\n");

 }

• lstat and fstat access file
descriptor for a path, which
includes unique file ID (st_ino)
– lstat does not traverse symlink
– fstat accesses descriptor of open file,

after symlink traversed by open
• Step (5) compares IDs of

– file checked in (1) and
– file opened in (3)

• Check-use-check_again approach
– Defeats swapping in symlink between

access and open
• Fails also if /tmp/X is a symlink

when (2) is executed
Source: Kevin Du, Race Condition Vulnerability, Lecture Notes

http://www.cis.syr.edu/~wedu/Teaching/IntrCompSec/LectureNotes_New/Race_Condition.pdf

Does the Fix Work?

38

• New attack
– Before (1) /tmp/X is a hard

link to /etc/passwd
– Between (1) and (2) swap in

hard link to user-owned file
– Between (2) and (3) swap in

again hard link to
/etc/passwd

• This passes the ID check
in (5) and allows the user
to write to /etc/passwd

1. lstat("/tmp/X", &statBefore);
2. if (!access("/tmp/X", O_RDWR)) {
3. int f = open("/tmp/X", O_RDWR);
4. fstat(f, &statAfter);
5. if (statAfter.st_ino == statBefore.st_ino) {
 /* the I-node is still the same */
6. write_to_file(f);
 }
7. else perror("Race Condition Attacks!");
 }
8. else fprintf(stderr, "Permission denied\n");

 }

Negative Result

39

• Assumptions
– Setuid program
– Path-based permission check for

real user ID via syscall
access(path, permission) that
returns 0 or -1

– No atomic check-and-open file
syscall

• Theorem
– Program is vulnerable to TOCTOU

race condition

• Proof
– Attacker can always swap good

file before access and bad file
after access

– lstat/fstat do not help since they
are path-based as well

• Reference
– Drew Dean, Alan J. Hu: Fixing

Races for Fun and Profit: How to
Use access (2). USENIX Security
Symposium, 2004.

https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf

Mitigating and Eliminating Race Conditions

40

• Hardness amplification
– Force the adversary to win a large

number of races instead of just one
or two in order to exploit the
vulnerability

– Reduces the probability of success
– Complex to accomplish correctly
– Reference

• Dan Tsafrir, Tomer Hertz, David
Wagner, Dilma Da Silva: Portably
Solving File TOCTTOU Races with
Hardness Amplification. USENIX File
and Storage Technologies, 2008

• Temporary privilege downgrade
– Within same process

• Drop to real user ID privileges via
setuid(real_userid)

• Open file
• Restore root privileges

– With child process
• Fork child process with real user ID

privileges to open file
– Approach not portable across Unix

variants
https://www.usenix.org/legacy/events/sec02
/full_papers/chen/chen.pdf

https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf
https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf
https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf

Other software security
topics

41

Incomplete mediation

u Access control

u what subject can perform what operation on what object

u Mediation (means checking)

u verifying that the subject is authorized to perform the operation on an object

u Preventing incomplete mediation

u validate all input

u limit users’ access to sensitive data and functions

u complete mediation using a reference monitor

u access control that is always invoked, tamperproof and verifiable

42

Time-of-Check to Time-of-Use

u mediation performed with a “bait and switch” in the middle

u between access check and resource use, data should remain unchanged

u exploits the details in the two processes

43

File:
my_file

Action:
Change byte 4 to A

File:
your_file

Action:
Delete file

Race conditions

44
Time

A

B

Yes Book seatSeat available?

Reservation system

NoSeat available?

Race conditions

45

Reservation system

Time

A YesSeat available? Book seat

B YesSeat available? Book seat

Other programming oversights

u Undocumented access points (backdoors)

u Off-by-one errors

u Integer overflows

u Un-terminated null-terminated string

u Parameter length, type, or number errors

u Unsafe utility libraries

46

Malware

47

Malware

u Programs planted by an agent with malicious intent

u to cause unanticipated or undesired effects

u Virus

u a program that can replicate itself

u pass on malicious code to other non-malicious programs by modifying them

u Worm

u a program that spreads copies of itself through a network

u Trojan horse

u code that, in addition to its stated effect, has a second, nonobvious, malicious effect

48

Types of malware

49

Types of malware (cont.)

50

History of malware

51

History of malware (cont.)

52

Harm from malicious code

u Harm to users and systems
u Sending email to user contacts

u Deleting or encrypting files

u Modifying system information, such as the Windows registry

u Stealing sensitive information, such as passwords

u Attaching to critical system files

u Hide copies of malware in multiple complementary locations

u Harm to the world
u Some malware has been known to infect millions of systems, growing at a geometric rate

u Infected systems often become staging areas for new infections

53

Transmission and propagation

u Setup and installer program

u Attached file

u Document viruses

u Autorun

u Using non-malicious programs:

u appended viruses

u viruses that surround a program

u integrated viruses and replacements

54

Malware activation

u One-time execution (implanting)

u Boot sector viruses

u Memory-resident viruses

u Application files

u Code libraries

55

Virus effects

• Virus Effect How It Is Caused
Attach to executable
program

• Modify file directory
• Write to executable program file

Attach to data or
control file

• Modify directory
• Rewrite data
• Append to data
• Append data to self

Remain in memory • Intercept interrupt by modifying interrupt
handler address table

• Load self in non-transient memory area
Infect disks • Intercept interrupt

• Intercept operating system call (to format
disk, for example)

• Modify system file
• Modify ordinary executable program

Conceal self • Intercept system calls that would reveal
self and falsify result

• Classify self as “hidden” file
Spread infection • Infect boot sector

• Infect systems program
• Infect ordinary program
• Infect data ordinary program reads to

control its execution
Prevent deactivation • Activate before deactivating program and

block deactivation
• Store copy to reinfect after deactivation

56

Countermeasures for users

u Use software acquired from reliable sources

u Test software in an isolated environment

u Only open attachments when you know them to be safe

u Treat every website as potentially harmful

u Create and maintain backups

57

Virus detection

u Virus scanners look for signs of malicious code infection using signatures in
program files and memory

u Traditional virus scanners have trouble keeping up with new malware—
detect about 45% of infections

u Detection mechanisms

u Known string patterns in files or memory

u Execution patterns

u Storage patterns

58

Virus signatures

59

Original
Program

IF (--)
JUMP

Separate
Virus

Module

Original
Program

Attached
Virus Code

Recognizable
signature elements

Countermeasures for developers

u Modular code: Each code module should be
u Single-purpose

u Small

u Simple

u Independent

u Encapsulation
u Information hiding
u Mutual suspicion
u Confinement
u Genetic diversity

60

Code testing

u Unit testing

u Integration testing

u Function testing

u Performance testing

u Acceptance testing

u Installation testing

u Regression testing

u Penetration testing

61

Design principles for security

u Least privilege

u Economy of mechanism

u Open design

u Complete mediation

u Permission based

u Separation of privilege

u Least common mechanism

u Ease of use

62

Other countermeasures

u Good

u Proofs of program correctness—where possible

u Defensive programming

u Design by contract

u Bad

u Penetrate-and-patch

u Security by obscurity

63

Summary

u Buffer overflow attacks can take advantage of the fact that code and data
are stored in the same memory in order to maliciously modify executing
programs

u Programs can have a number of other types of vulnerabilities, including off-
by-one errors, incomplete mediation, and race conditions

u Malware can have a variety of harmful effects depending on its
characteristics, including resource usage, infection vector, and payload

u Developers can use a variety of techniques for writing and testing code for
security

64

